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Chapter 1

Historical Background: Cash
Money and Other
Mathematical Concepts

1.1 He’s Making a List, and Checking it for

Money

On August 8, 1900, David Hilbert, a German mathematician with a pen-
chant for really cool-looking hats, strode to the board at the International
Congress of Mathematicians in Paris and, in an historic pronouncement, un-
veiled a list of ten problems that he felt would be of fundamental importance
to mathematics in the 20th century. The mathematicians around the room
were shocked, presumably because many of them had never seen ten prob-
lems listed in a row before1. Critical acclaim for the pronouncement was
immediate, with some critics going so far as to call it “The talk of the new
century!” and “The best list of ten problems I’ve ever seen!”

Encouraged by his success2, Hilbert soon released the notes from his talk
with a director’s commentary in which he announced thirteen extra problems,
making twenty-three in total. These problems, like their predecessors, were
also met with great approval from the mathematical community.

It often happens that a work, though critically acclaimed, is quickly for-

1Plus, several of them had been studying mathematical abstractions for so long that
they had forgotten how to count to ten, making Hilbert’s enumeration even more shocking.

2Although disappointed that no one had commented on how awesome his hat looked.
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CHAPTER 1. HISTORY: LARGE PILES OF MONEY 3

gotten. This was not the case with Hilbert’s problems. In fact, the result was
quite the opposite, as Hilbert’s list turned out to be creepily predictive of the
new century. Today, seventeen of the twenty-three questions have been fully
or partially resolved; moreover, for many of these questions, the solutions
(or partial solutions) resulted in breakthroughs that became fundamental
to the development of 20th century mathematics. Just six of the questions
remain completely unsettled, although one of the questions (“Construct all
metrics where lines are geodesics”) is considered hopelessly broad and an-
other question (“Is this hat awesome or what?”) has been deemed by many
mathematicians to be “too rhetorical to pursue.”

Exactly one hundred years later, with most of Hilbert’s original list solved,
the Clay Mathematics Institute decided to honor Hilbert’s announcement by
compiling a new list of of twenty-three unsolved problems that would be of
importance in the 21st century. Unfortunately, coming up with a large list of
interesting unsolved problems turns out to be harder than it looks, and the
Institute managed to compile just seven problems (including one - the Rie-
mann Hypothesis - that they “borrowed” from Hilbert’s original list) before
they were forced to resort to rhetorical questions about hats. Realizing that
a list of just seven problems, one of which wasn’t even new, wouldn’t exactly
electrify the math community, the Clay Mathematics Institute decided that
the best way to garner attention and support for their list was to add some
“pizazz” (defined here as “large quantities of money”) to it, and so they an-
nounced that anyone who solved any of the seven problems on the list would
receive a one million-dollar prize. The gambit worked; mathematicians, who
were now able to claim with a straight face that they worked in a “lucrative
field” when talking to friends or inquisitive in-laws, gave the Institute’s an-
nouncement a warm reception, and the list soon came to be accepted as the
natural successor to Hilbert’s list.

Of all of the mathematical concepts on the Clay Mathematics list, the
most interesting one for a number theorist is undoubtedly the one million
dollars. However, that doesn’t make for a very interesting paper, so we’ll
talk instead about the second most interesting one: the aforementioned Rie-
mann Hypothesis.
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1.2 The Riemann Hypothesis: Yeah, I’m Jeal-

ous

The Riemann Hypothesis is named after the fact that it is a hypothesis,
which, as we all know, is the largest of the three sides of a right triangle. Or
maybe that’s “hypotenuse.” Whatever. The hypothesis was posed in 1859
by Bernhard Riemann, a mathematician who was not a number theorist and
wrote just one paper on number theory in his entire career. Naturally, this
single paper would go on to become one of the most influential papers in
number theory history, a depressing, frustrating, and angering thought for
those of us who will actually work in number theory full-time for our entire
lives and will still never write a number theory paper nearly that important.



CHAPTER 1. HISTORY: LARGE PILES OF MONEY 5

In this infuriatingly important paper, entitled Ueber die Anzahl der Primzahlen
unter einer gegebenen Grösse (which, according to a translator I found on-
line, translates into English as Possibility of the Size Lower Part Primes
Which Comes to Give), Riemann introduced mysterious new function which
he called ζ (the Greek letter zeta) and asked, “When does this function hit
zero?” While this may seem a really simple question, the zeta function turns
out to be extremely important to the study of number theory, and Riemann’s
query has gone on to have far-reaching implications not just in number theory
but throughout all of math and physics. What a jerk.

Of course, Riemann’s work was predicated upon the earlier work of Leonard
Euler. As you will soon discover, this is actually one of the recurring literary
themes in this book; most of the stuff that we do in number theory is based
on some idea that Euler had, so his name comes up an awful lot. Apparently,
Euler was a pretty productive guy.

In this case, what Euler did was discover a new function that would give
rise to this “zeta” that I mentioned above. We’ll outline Euler’s function and
the sorts of bizarre things Riemann did to it in the next chapter.



Chapter 2

Make My Funk a Z-Func(tion)

To help us understand the function that Euler discovered, let us begin with
a simple question. What happens if we take the following sum:

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ ....?

What happens is that the sum goes off to infinity, indicating that the above
is a dumb question.

Lets try again. What happens if we take another sum:

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ ....?

This one is actually a little more interesting:

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ .... =

π2

6
.

The sum
1

13
+

1

23
+

1

33
+

1

43
+

1

53
+

1

63
+ ....

is a bit of a mystery that I won’t get into here (though it equals about 1.202),
but this one’s kind of cool:

1

14
+

1

24
+

1

34
+

1

44
+

1

54
+

1

64
+ .... =

π4

90

Euler saw all of these identities1 and was so inspired that he asked the fol-
lowing question:

1Actually, he was the one who discovered them.
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The Euler Question: Get a load of this expression:

1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ ....

Are there any s’s for which interesting things happen (besides 2 and 4)?

When someone asks a good question like this, the first thing that we math-
ematicians do is start naming everything in the problem because naming
things is way easier than solving math problems. Let’s give our expression a
name:

Definition: Write the above expression as Z(s), i.e.

Z(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ ....

So Z(2) = π2

6
, Z(4) = π4

90
, Z(1) goes off to infinity, etc.

Now, we can restate the question above, which still doesn’t change any-
thing but again gives us the illusion of doing something productive:

The More Economical Euler Question: What happens with Z(s) when
s isn’t 2 or 4?

It looks like we’ve succeeded in asking our question in as few characters
as possible. That’s progress.

Unfortunately, the answer isn’t going to be quite as nice as we hoped.

Partial Answer: There are many, many values that are completely un-
interesting.

What’s the problem? Well, remember how we said that Z(1) went off to
infinity? It turns out that “goes off to infinity” is not an interesting thing
for Z(s) to do2. Moreover, it turns out that 1 isn’t the only place where s
goes off to infinity. For example, if you take any positive integer and raise it

2Okay, I suppose it’s a little interesting, but compared to something like π2

6 ? Come on.
It’s no contest.
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to the zero, you get 1. So

Z(0) =
1

10
+

1

20
+

1

30
+ ... =

1

1
+

1

1
+

1

1
+ ... = 1 + 1 + 1 + ...

which undoubtedly goes off to infinity as well.
It gets even worse if s is a negative number. Remember that having a

negative exponent flips the fraction over (i.e. 1
x−2 = x2). So for things like

s = −1, we have

Z(−1) =
1

1−1
+

1

2−1
+

1

3−1
+ ... = 11 + 21 + 31 + ...

which is also getting really, really big. This is obviously going to be a problem
for any negative s. Basically, we have a function that’s not even going to be
defined half of the time.

From these observations, we have the following theorem to describe just
how annoying and useless Z(s) can be:

Major Theorem: If s ≤ 1 then the function Z(s) blows.3

2.1 Why Was Euler Thinking About That

Function, Anyway?

It’s a funny story, actually. One day, the positive integers were minding their
own business, patiently waiting in line to be added up in the Z-function,
hoping that the operator hadn’t chosen an s that would make them all blow
up, when all of a sudden.....

....a rebel gang of numbers showed up:(
1

1− 1
2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)(
1

1− 1
11s

)(
1

1− 1
13s

)
....

3Here, by “blows,” we of course mean the conventional mathematical definition of
“blows up to infinity.” I don’t know why you would have thought I meant something else.
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Good God, thought the integers, those are the prime numbers! And they’ve
arranged themselves in a pattern to make themselves equal to Z(s)!

Z(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
....

=

(
1

1− 1
2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)(
1

1− 1
11s

)(
1

1− 1
13s

)
....

The positive integers were aghast at the insolence of those primes. The
primes had found a vehicle with which they could turn statements about
integers into statements about prime numbers. And they had done it by
hijacking the integers’ beloved Z(s), too!

While the non-prime integers may still harbor some resentment over this
coup, we number theorists view this revolution in much the same way Ameri-
cans view the American Revolution. It means that if we want to think about
questions related to prime numbers, we can use this Z(s) to translate them
to questions about regular old positive integers, which are much easier to
deal with4. Since number theorists are obsessed with primes, this is, in the
eloquent words of one high-ranking federal official, a “big f***ing deal.”

4Don’t believe me that positive integers are easier than primes to deal with? Okay,
smarty pants, answer me these questions: What’s the next prime number after 7549?
What’s the next positive integer after 7549? Which question was easier? Yeah, that’s
what I thought.



Chapter 3

The Zeta Function: Magical,
Mystical, and....Dear God,
What Is That Thing?

Despite the fundamental importance of Z(s), Euler’s efforts to tame this
function and domesticate it and maybe make it do tricks were hamstrung by
the fact that it always seemed to be blowing up at inopportune times. As a
result, he gave up and spent the remainder of his life going blind working on
other mathematics in a dark attic.

The function continued to lay prostrate in its useless state for over half
of a century until Bernhard Riemann came along. He took the function into
his office, watched it self-destructively blow up any time a negative number
was mentioned, and decided that it needed help. Although Riemann was
not a number theorist by trade, he felt, much like that guy in the movie
“Lorenzo’s Oil,” that he could teach himself enough number theory to cure
Z of its horrible ailment.

10
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After months in his basement laboratory1, Riemann emerged with what
he thought was a remedy: a new function that he called ζ (the Greek letter
zeta) because Riemann mistakenly thought that he was Greek. It was a
function that had the scientific importance of the Frankenstein monster2 and
the aesthetic appeal of, well, the Frankenstein monster. Take a look at this
thing:

1Riemann probably didn’t have a basement laboratory. He probably had a cushy
university office with a comfy couch where he would lie down and sometimes take naps,
and then sometimes people would knock on his office door and he would groggily tell them
that he wasn’t napping but instead “thinking about mathematics.” Believe me, that little
trick isn’t fooling anybody, Riemann.

2I suppose that the Frankenstein monster didn’t have any actual scientific importance
since it was a fictional monster, but the scientists in the movie all looked pretty impressed,
so that’s close enough for me.
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ζ(s) =
1

1− 21−s

∞∑
n=0

1

2n+1

n∑
k=0

(−1)k
n!

k!(n− k)!
(k + 1)−s.

It’s hideous3!
Why is this a fix, you ask? Well, let’s take it for a test drive and try out

some values. First, let’s try s = 2:

ζ(2) =
π2

6
.

Wait, we’ve seen that value before. That’s Z(2)!
Now, let’s do another one:

ζ(4) =
π4

90
.

That’s Z(4)!
We can try value after value for s, but the same result will keep happening:

Riemann’s Result: For any s for which Z(s) doesn’t blow up, ζ(s) = Z(s).

Riemann had found a function that mirrored Z(s). Unlike Z(s), though,
ζ(s) didn’t blow up if s was less than 1. And ζ was prepared to handle
all kinds of numbers! Fractions! Decimals! Imaginary numbers like

√
−1!

Combinations of real numbers and imaginary numbers! ζ(s) was like a post-
spinach-Popeye version of Z(s).

Unfortunately, like Achilles, ζ still had one flaw. There was one single
value for s that ζ couldn’t handle:

Fundamental Statement About Zeta: ζ(1) is undefined.

Oh well. You can’t have everything.

3Sometimes, in an attempt to get the same amount of shock value in less space, math-
ematicians will consolidate notation and write the function as

ζ(s) =
Γ(1− s)

2π

∮
γ

uz−1

e−u − 1
du.

For those who are interested, there’s a more thorough explanation of how Riemann got
from Z(s) to ζ(s) in Appendix A.
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3.1 Getting Back To Our Original Question

Now that we’ve found a suitable replacement for the mercurial Z(s), we can
try asking Euler’s question again:

The Euler Question (again): Is there anything interesting about ζ(s)?

This question can often be a dog-whistle type question for mathematicians;
when we say, “Is it interesting?”, we often mean, “Does it hit zero a lot?”
That may not be interesting to everyone, but mathematicians think zero is
really, really fascinating. We’re kind of like that kid with the video camera
in “American Beauty” who thinks that a bag blowing in the wind is the most
beautiful thing in the world; you may think we’re weird, but, well, who asked
you anyway?

Since “interesting” means different things to different people anyway, let’s
try thinking about this zero stuff and see if it gets us anywhere:

The Euler Question (yet again): When does ζ(s) hit zero?

There are actually quite a few places where it is easy to show it hits zero:

Partial Answer: ζ(s) = 0 when s = −2,−4,−6,−8,−10, ....

OK. We’re partway there. Those are the ones that are actually pretty easy
to find. What about other ones?

The Euler Question (for the last time, I swear): Okay, okay. Be-
sides negative even integers, when does ζ(s) hit zero?

We don’t have all the answers to this question, but here’s one4:

ζ(
1

2
+ 14.134725142i) = 0.

Here’s another one:

ζ(
1

2
+ 21.022039639i) = 0.

4In case you’ve forgotten, i =
√
−1.
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And another:

ζ(
1

2
+ 25.010857580i) = 0.

And yet another:

ζ(
1

2
+ 30.424876126i) = 0.

Starting to notice a pattern? They all seem to be 1
2

plus some multiple of i.
It would be natural to ask whether this pattern will continue. It’s so

natural to ask, in fact, that Riemann beat you to it by over 150 years.

The Riemann Question: Let’s ignore those negative even integers for now.
If ζ(s) = 0, does that mean that s is 1

2
plus a multiple of i?

This question has a less than satisfactory answer:

The Riemann Answer: I have no earthly idea.

Coming up with a more satisfactory answer (such as “yes” or possibly even
“no”) is such a difficult thing to do that a $1,000,000 reward has been
promised to the person who finally does. The best we currently have is
the following:

The Riemann Guess: The answer looks like it should be yes (?)

or, in mathier speak:

The Riemann Hypothesis (The Riemann Guess with Fancier Words):
If ζ(s) = 0 and s is not a negative even integer then s is 1

2
plus a multiple of i.

or, in even mathier speak:

The Riemann Hypothesis (Take 2): If ζ(s) = 0 and s is not a neg-
ative even integer than s = 1

2
+ it for some real number t.

The Riemann Hypothesis is considered by many mathematicians to be the
most important unsolved problem in mathematics today.
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3.2 Wait, Wait, That’s It? The Question of

When Some Esoteric Function Hits Zero

is The Most Important Problem In Math?

Yep.

3.3 How?

I’m glad you asked. Because the Riemann Zeta Function is based on such
a simple equation (namely, Z(s)), it’s something that comes up in a lot of
computations, so having a good understanding of it would help us calculate
all sorts of interesting properties about integers and prime numbers. As far
as conjectures go, it’s not as sexy (or as likely to generate crank mail) as
something like the Twin Primes Conjecture, but we all know that beauty is
skin-deep, and the Riemann Hypothesis is nothing if not deep5.

3.4 Can You Give An Example of Something

That the Riemann Hypothesis Can Show

Us?

Funny you should ask. The next chapter is all about one of the most famous
examples: Gauss’ Prime Number Theorem.

5Heck, it took me like ten pages to define the stupid thing. That’s pretty deep.



Chapter 4

Application: Primes on Parade

4.1 Boredom is the Mother of Invention

Let us begin with a question which is actually three questions:

Question(s): How many prime numbers are there up to 100? How about up
to 1,000? Or 1,000,000?

One way of answering the above is to manually count all of the primes up to
100 or 1,000 or 1,000,000. I would do that, except that it sounds like a lot
of work and would be kind of boring, and, besides, the Red Sox game is on.
So that’s out.

We are forced, then, to rephrase our question:

Better Question: Counting is boring, and I’m lazy. Is there some for-
mula that I could use where I just plug in some number and it will do all the
work for me?

This was the question that a fifteen-year old named Carl Friedrich Gauss
considered in 1792. Unlike me, Gauss did not have an urgent Red Sox game
to attend to, so he sat down, looked through the data, and came up with a
pretty good answer:

Gauss’ Answer: The number of primes less than x is about x
lnx

.

16
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So if we wanted to know the number of primes less than 1,000, we could
just calculate 1,000

ln 1,000
and we’ve got a pretty reasonable estimate.

This work should have been impressive enough for somebody who wasn’t
yet old enough to drive1. However, Gauss wasn’t satisfied and announced,
“No! I can do even better! I shall come up with a function that comes even
closer to the correct number of primes! And the function will be easy to
calculate!”

Although this sounded like a bunch of empty promises to the wary public
in an election year like 1792, Gauss actually succeeded in his quest and found
exactly the function he was looking for. He called this function Li because
he, like most 18th century number theorists, was a big fan of kung-fu legend
Bruce Lee2.3 Since Li actually turns out to be pretty straightforward to

1Although I suppose this was less of an issue before the invention of the automobile.
2Oddly enough, Li is also the first letters of the words “Logarithmic Integral.” Coin-

cidence? Probably. I’m still going with the Bruce Lee explanation for the name.
3If you’re curious, the actual definition of Li is given by

Li(x) =

∫ x

2

dt

ln t
.
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calculate, if we want to find the number of primes up to 1,000, we can just
calculate Li(1, 000) and we’ve got an even better estimate than before4. This
realization deserves bold letters:

The Prime Number Theorem: The number of primes less than x is
approximately Li(x).

4.2 Riemann Hypothesis: Karate Kicking Li’s

Error Terms Since 1859

In the last section, we made a lot of nebulous statements like, “This is a
good estimate,” or “This is an even better estimate.” This is unfortunate, as
mathematicians don’t like ambiguously descriptive words like “good” because
they don’t really tell us anything. We are forced, then, to ask the question,
“How good of an estimate is this, anyway?” Annoyingly, this question also
uses the word “good,” but we’ll let it slide because it’s a useful question; in
fact, it is such an important question that it deserves italics:

The Li Question: How closely does Li estimate the number of primes less
than x?

As before, we start by naming things. The most obvious candidate for a
makeover is “the number of primes less than x,” which is annoying to write
out all the time. To help with this, I’m going to call this quantity P (x).5

Armed with this notation, we rephrase the question and pretend that we’ve
accomplished something in doing so:

If you weren’t curious, well, too bad. It’s your fault for looking down here at the footnote
in the first place.

4It should be noted that while Gauss came up with these guesses, they weren’t proven
to be correct until 1896. In other words, instead of taking the five minutes to count the
number of primes up to 1,000, mathematicians spent hours coming up with a guess for
what the answer should be, then spent over a hundred years proving that the guess was
correct. Yep, that was productive.

5Mathematicians actually call this π(x); however, since we already have π = 3.14159....,
I didn’t want to confuse the readership.
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The More Economical Li Question: How far apart do Li(x) and P (x)
get?

Sometimes, we call the difference between Li(x) and P (x) the error term
in the Prime Number Theorem. Sometimes, we don’t. Really, it just de-
pends how we’re feeling.

In our pre-Riemann Hypothesis world, the answer to the above question
was unsatisfying:

The Li “Answer”: Well, we think so.

In fact, we know that Li(x) and P (x) can differ by as much as
√
x · ln x

because we’ve seen it in actual data. The hope is that they don’t differ by
much more than that because

√
x · ln x is pretty small relative to the number

of things we’re counting, which would mean that the Li function does a really
good job of approximating P (x). In the last hundred years, mathematicians
have come up with better and better answers, but we’re still nowhere near
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where the data indicates that we should be.
On the other hand, if the Riemann Hypothesis were true, we would have

a very, very good answer to this question:

The Li Answer with Riemann: If the Riemann Hypothesis is true then
Li(x) and P (x) never differ by more than about

√
x · lnx.

In other words, what we hope to be true is actually true if the Riemann
Hypothesis is correct. That’s a pretty powerful hypothesis.

Our story would normally end here, except that there’s actually a weird
sidenote to this:

The Li Answer with Riemann, but Backwards: If Li(x) and P (x)
never differ by more than about

√
x · lnx then the Riemann Hypothesis is

true.

So as it turns out, the question about the error term and the Riemann Hy-
pothesis are actually the same question; if you prove one of them, the other
is necessarily true.

Man, math is weird sometimes.



Chapter 5

Appendix A: Analytic
Continuation

In this section, I’ll discuss a little more of the math that goes on. If you aren’t
really interested in the math behind it, then.....wait, seriously? You spent
the last twenty pages reading about the Riemann Hypothesis but don’t care
about math? What kind of garbage is that? Suck it up and keep reading.

5.1 Riemann’s Number Theoretical Patch: Bet-

ter than Number Theoretical Gum

Let’s go back to Riemann’s idea. When we last left our hero, he had stumbled
upon the following creature:

Z(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+ ....

This function was having a hard time getting through the world because it
exploded at the mere mention of numbers less than or equal to 1. Riemann
felt that this function would benefit from some sort of patch, so he decided
to try multiplying it by (1− 2

2s
).1 Armed with this patch, Z became a little

less temperamental:

(1− 2

2s
)Z(s) =

1

1s
− 1

2s
+

1

3s
− 1

4s
+

1

5s
− 1

6s
....

1This is quite similar to the movie “Patch Adams”, wherein Patch fixes his friend’s
leaky cup by multiplying it by (1− 2

2s ).
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The right hand side of this function is now defined when s > 0. That’s
progress.

How does this help? Well, Riemann decided to divide both sides of the
above by (1− 2

2s
). This gives

Z(s) =
1
1s
− 1

2s
+ 1

3s
− 1

4s
+ 1

5s
− 1

6s
....

1− 2
2s

.

Now, he had an expression for Z that was defined for s’s all the way down to
zero. He decided to celebrate in traditional mathematics fashion by renaming
his function2; from now on, this Z would become known as......ζ:3

ζ(s) =
1
1s
− 1

2s
+ 1

3s
− 1

4s
+ 1

5s
− 1

6s
....

1− 2
2s

.

5.1.1 An Obvious Symmetry

All right, so we’ve gotten s down to 0 instead of 1. How do we get s to go
the rest of the way?

Well, as it turns out, if s is between 0 and 1, ζ(s) has a very nice symmetry
to it. In fact, I’m sure you noticed this symmetry immediately, so I don’t
need to point it out, but I’ll do so anyway:

ζ(s) = 2sπs−1 sin(
sπ

2
)

[∫ ∞
0

e−yy−sdy

]
ζ(1− s)

when s is between 0 and 1. That was obvious.
Now, note that if you plugged in, say, 1

4
for s, you end up with ζ(3

4
) on the

right-hand side. This isn’t much of an improvement, because we can already
calculate ζ(1

4
), so we basically just took something we knew and made it

harder.
But Riemann had another thought. What if you plugged in, say, -3 for

s? Then the above becomes:

ζ(−3) = 2−3π−4 sin(
−3π

2
)

[∫ ∞
0

e−yy3dy

]
ζ(4).

2We mathematicians know how to throw rollicking parties.
3Note that ζ is still not defined for s = 1 because if we plugged in 1 for s, the bottom

would be zero and division by zero is bad. Very, very bad.
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This is ugly. However, it’s doable. Or rather, the right side is doable; ζ(4)
can be easily calculated, and there’s no reason you couldn’t calculate the rest
of the things on the right hand side as well4. But wait - we’ve got an equal
sign, and the thing on the right is defined - the thing on the left is defined,
too (and equals the thing on the right). So ζ(−3) is finally defined! And this
definition doesn’t even involve the word “blow”.

What’s special about -3? Nothing! We could have done this for any
negative number. In other words, if I wanted to find ζ(s) for some negative
value of s, I could simply plug this negative value into the expression above;
the right-hand side would give me a bunch of stuff I could calculate, including
ζ of some positive number (which has already been defined). Armed with
this trick, we can now evaluate ζ for anything - except, of course, s = 1.5

And thus, the Z-function was made whole.

4Note that I say that you can calculate it because I certainly have no interest in doing
so.

5In case you’re wondering, mathematicians have a word for a function like this that
works nicely at every possible s except for some limited number of values (in this case,
one); that word is meromorphic. They also have some words for the points where the
function isn’t defined, but those words are a bit too colorful for this book and need not
be repeated here.


